General Random Variables
Continuous Random Variables and PDFs¶
Continuous RV
A random variable \(X\) is called continuous if there is a nonnegative function \(f_{X}\), called the probability density function of \(X\), or PDF for short, such that
for every subset \(B\) of the real line.
Expectation
The expected value or expectation or mean of a continuous RV \(X\) is defined by
Variance
The variance, denoted by \(\mathrm{var}(X)\), is defined as the expected value of the RV
Exponential RV
An exponential RV has a PDF of the form
where \(\lambda\) is a positive parameter characterizing the PDF.
ERV 的 mean 和 variance 分别为
Cumulative Distribution Functions¶
CDF
The cumulative distribution function (CDF) of a RV \(X\) is denoted by \(F_{X}\) and provides the probability \(\Pr(X \leq x)\). In particular, for every \(x\) we have
对于 geometric CDF, 我们有
对于 exponential CDF, 我们有
Normal Random Variables¶
Normal RV
A continuous RV \(X\) is said to bew normal or Gaussian if it has a PDF of the form
where \(\mu\) and \(\sigma\) are two scalar parameters characterizing the PDF, with \(\sigma\) assumed positive.
它的 mean 和 variance 分别为
Standard Normal
A NRV \(Y\) with zero mean and unit variance is said to be a standard normal. Its CDF is denoted by \(\Phi\):
我们可以借助 standard normal table 来求得 \(\arg \Phi(y)\).
令 \(X\) 为一个 NRV, 其中 mean 为 \(\mu\), variance 为 \(\sigma^2\), 我们可以 "standardize" \(X\) 得到一个新的 SNV \(Y\):
Joint PDFs of Multiple Random Variables¶
Joint PDF
We say that two continuous RV associated with the same experiment are jointly continuous and can be described in terms of a joint PDF \(f_{X, Y}\) if \(f_{X, Y}\) is a nonnegative function that satisfies
for every subset \(B\) of the two-dimensional plane.
也可以根据 joint PDF 求出 marginal PDFs.
类似的, 我们也有 joint CDFs:
CDF 求导可得对应的 PDF:
Abstract
- continuous uniform over \([a, b]\):
-
\[f_{X}(x)=\begin{cases} \frac{1}{b-a}, &\text{if }a\leq x \leq b, \\ 0, &\text{otherwise,} \end{cases}\]
-
\[\mathrm{E}[X]=\frac{a+b}{2}, \quad \mathrm{var}(X) = \frac{(b-a)^2}{12}.\]
-
- exponential with parameter \(\lambda\):
-
\[f_{X}(x) = \begin{cases}\lambda e^{ -\lambda x }, &\text{if } x \geq 0, \\ 0, &\text{otherwise},\end{cases} \quad F_{X}(x) = \begin{cases}1 - e^{ -\lambda x }, &\text{if } x \geq 0, \\ 0, &\text{otherwise,}\end{cases}\]
-
\[\mathrm{E}[X]=\frac{1}{\lambda}, \quad \mathrm{var}(X)=\frac{1}{\lambda^{2}}\]
-
- normal with parameters \(\mu\) and \(\sigma^{2}>0\):
-
\[f_{X}(x) = \frac{1}{\sqrt{ 2\pi }\sigma}e^{ -(x-\mu)^{2} / 2\sigma^{2} },\]
-
\[\mathrm{E}[X]=\mu, \quad \mathrm{var}(X)=\sigma^{2}.\]
-
Conditioning & Independence¶
与上一章的内容是类似的, 这里不再赘述.
The Continuous Bayes' Rule¶
Abstract
令 \(Y\) 为一个 continuous RV.
- 若 \(X\) 是一个 continuous RV, 我们有
\(\(f_{Y}(y)f_{X | Y}(x | y) = f_{X}(x) f_{Y|X}(y|x),\)\) 于是 \(\(f_{X|Y}(x|y)=\frac{f_{X}(x)f_{Y|X}(y|x)}{f_{Y}(y)}=\frac{f_{X}(x)f_{Y|X}(y|x)}{\int_{-\infty}^\infty f_{X}(t)f_{Y|X}(y|t)\mathrm{d}t}\)\)
- 若 \(N\) 是一个 discrete RV, 我们有
\(\(f_{Y}(y)\Pr(N=n|Y=y)=p_{N}(n)f_{Y|N}(y|n),\)\) 于是 \(\(\Pr(N=n|Y=y)=\frac{p_{N}(n)f_{Y|N}(y|n)}{f_{Y}(y)}=\frac{p_{N}(n)f_{Y|N}(y|n)}{\sum_{i}p_{N}(i)f_{Y|N}(y|i)},\)\) 以及 \(\(f_{Y|N}(y|n)=\frac{f_{Y}(y)\Pr(N=n|Y=y)}{p_{N}(n)}=\frac{f_{Y}(y)\Pr(N=n|Y=y)}{\int_{-\infty}^\infty f_{Y}(y)\Pr(N=n|Y=y)\mathrm{d}t}\)\)
- 对于 \(\Pr(A|Y=y)\) 和 \(f_{Y|A}(y)\) 也有类似的式子.